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ABSTRACT 

This work centers on parametised investigation of the field strength fading characteristics of 

microcellular wireless LTE channels operating in typical urban terrains. Due to the 

blockades between the transmitting NodeBs and the mobile station receiver, the fading 

characteristics of LTE channel are highly stochastic with respect to time or transmitting 

distance and possesses their own distinctive property. To robustly investigate the field 

strength fading characteristics, detail drive test measurement has been conducted in five 

different site locations in waterline area of Port Harcourt City Nigerian at 2.6GHz. From the 

measured field data, the parametised amplitude of the measured field data is estimated by 

using the Maximum Likelihood Estimation (MLE) based on different probability 

distribution functions. The results of the parametised MLE estimate for the acquired field 

data has been shown, analyzed and reported for each studied location. It is supposed that 

results of this research this work would serve as a first-hand information for effective 

communication system design and deployment of future cellular broadband mobile network 

in similar radio signal propagation terrains. 
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INTRODUCTION 

In cellular broadband communication 

systems, the natural and man-made 

obstructions between the transmitting and 

mobile station antenna largely influence 

the received field strength of the 

propagated signal power, thus leading to 

fluctuating and degraded system quality of 

service. An accepted criterion of 

performance monitoring and optimization 

such communication systems is to have 

detail knowledge about stochastic field 

signal statistics the channels for re-

planning of its networks. Also, according 

to Isabona et al. (2013) and Isabona and 

Konyeha, (2013), quantified and 

parametised understanding of the 

propagated field strength behaviour in the 

radio links is required to carry out in-depth 

prognosis analysis of the level of signal 

coverage fluctuations in the cellular 

broadband communication networks 

(Isabona and Obahiagbon, 2014). 

In the past years, scholars have 

explored a number of approaches to study 

stochastic signal fading phenomenon. For 
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example, in Xiao-Li et al. (2018), transmit 

power estimation centered on Signal 

Strength of wireless network with 

cooperative receiver nodes is presented 

using Maximum Likelihood (ML) 

estimation technique. Their results reveals 

that numerical experiments validate the 

explored ML theoretical discoveries. In 

Nikola et al. (2005), the authors explored 

maximum likelihood estimation method 

combined with signal statistics is explored 

to determine the intensity modulated fiber 

optic links.  

Abiodun and Ojo, (2019), worked on 

realistic predictive modelling of stochastic 

path attenuation losses in wireless 

channels over microcellular urban, 

suburban and rural terrains using 

probability distribution functions. The 

results of their study revealed the normal 

distribution was most suitable for the 

statistical predictive modelling signal path 

loss data. Similar predictive analysis and 

reports in (Krishnamoorthy, 2006; Salo et 

al., 2005; Fengyu et al., 2005).  

This work centres on parametised 

investigation of the field strength fading 

characteristics of microcellular wireless 

LTE channels operating in typical urban 

terrains. To robustly investigate the field 

strength fading characteristics, detail drive 

test measurement is piloted in five 

different locations in waterline area of 

Port Harcourt City Nigerian at 2.6GHz. 

From the measured field data, the 

parametised amplitude of the measured 

field data is estimated by using the 

Maximum Likelihood Estimation (MLE) 

based on different probability distribution 

functions. The results of parametised 

MLE estimate of the acquired field data 

fading characteristics has been revealed, 

analyzed and reported for each studied 

location.  

THEORETICAL FRAMEWORK 

Maximum Likelihood Estimate and 

Statistical Probability Models 
Maximum likelihood estimation 

(MLE) is a technique of estimating to 

obtain the parameters of a statistical 

model, given the observations (i.e. the 

observed data). This statistical model 

contains the unknown parameters. Those 

values of the parameters that maximize the 

probability of the observed data are 

referred to as the maximum likelihood 

estimates. The likelihood function or 

model is the probability density function 

(PDF) of the particular observations, and 

the MLE solution is the parameter that 

maximizes this joint PDF. 

In communication theory, though 

there exist a number of PDF models, but 

the problem is in choosing the right one 

for effective prognosis analysis a 

particular datasets. In this work, the 

concentration is on Normal, lognormal, 

Nakagami, Rician, Weibull and Rayleigh 

PDFs. 

(a) Normal Distribution Model 

The normal distribution possess key 

two distribution parameters. The first 

parameter is tagged the mean ( )µ , and 

the second one is called the standard 

deviation ( )σ  or the variance ( )2σ . 

The normal PDF and PDF can be 

determine using (Isabona and 

Konyeha, 2015; Krishnamoorthy, 

2006): 

( )
( )








 −−
=

2

2

2
exp

2

1
,,

σ

µ

πσ
σµ

x
xf (1) 

                  

( ) ( )















 −
+=

2
1

2

1
,,

σ

µ
σµ

x
erfxF       (2) 

 

Joseph Isabona Maximum Likelihood Parameter Based Estimation for In-Depth Prognosis 



 

129 

 

 The maximum likelihood estimators for 

the normal distribution are the µ and ;σ

they can be obtained using the expression 

in (3) and (4): 
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where x and N indicate the measured 

sample and the measurement sample 

number.  

  

(a) Lognormal Distribution Model 

The lognormal distribution, also generally 

termed Galton or Gaussian distribution, is 

applicable the desired quantity of interest 

must be positive. The lognormal PDF and 

CDF can be defined by (Krishnamoorthy, 

2006):  
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 In (7), µ and ω  maximum likelihood 

estimators and they represent the shape 

and scale distribution parameters for the 

lognormal. The mean and standard 

deviation for lognormal can be expressed 

as:  
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where x stands for the measured sample.  

 

(b) Weibull Distribution Model 

The weibull distribution, which 

generally employed for reliability 

analysis, make use of λ , and c as its 

shape and scale (Weibull slope) 

distribution parameters. The Weibull 

PDF and CDF can be defined by 

(Krishnamoorthy, 2006, Abiodun and 

Ojo, 2019): 
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 The distribution parameters, µ  and σ

can be obtained the expressions in (11) 

and (12) respectively: 
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where x stands for the measured sample.  

 

(c) Rayleigh Distribution Model 

The Rayleigh distribution is a 

continuous probability distribution 

and also a special (singular) case of the 

Weibull distribution. The Rayleigh 

PDF and CDF are given by 

(Krishnamoorthy, 2006, Abiodun and 

Ojo, 2019): 
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 The distribution parameters, µ  and 
mσ

can be obtained the expressions in (15) 

and (16) respectively: 
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where x stands for the measured sample.  
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(d) Nakagami Distribution Model 

The Nakagami distribution, also 

termed Nakagami-m distribution, 

behave roughly and evenly near its 

mean value. The Nakagami PDF and 

CDF can expressed as 

(Krishnamoorthy, 2006): 
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 In (20), µ and ω  represent the shape and 

scale distribution parameters for the 

Nakagami. The mean and standard 

deviation for Nakagami can be expressed 

as:  
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where x stands for the measured sample.  

 

(e) Rician Distribution 

In communication, the Rician 

distributions model are usually 

employed to study stronger line-of-

sight fading channels. The Rician PDF 

and CDF can expressed as 

(Krishnamoorthy, 2006): 
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 In (24), µ and ω  represent the shape and 

scale distribution parameters for the 

Rician. The mean and standard deviation 

for Rician can be expressed as:  
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where x stands for the measured sample. 

)( zI o
and )(1 zQ  represent the modified 

Bessel function and Marcum Q function, 

respectively. 

 

METHODOLOGY 

Data Collection  
The measurement campaign has been 

performed around five operational Long 

term Evolution (LTE) cellular networks 

base station (BS) sites in Waterline areas 

of Port Harcourt City, with concentration 

on built-up busy urban streets, and roads. 

It is a typical urban area with a flat 

topography and mixed commercial and 

residential building edifices. As revealed 

in table 1, the BS antenna heights range 

from 28m to 45m, elevated above the 

ground level to broadcast signals in three 

sectors configuration.  With the aid of 

drive test equipment which include the 

Global Positioning System (GPS), HP 

Laptop, two Samsung Galaxy mobile 

Handsets (Model-SY 4) and network 

scanner, signal power measurements were 

conducted along different routes round the 

cell sites, in active mode. Specifically, 

drive tests around sites I, II and IV were 

performed via non-line of sight (NLOS) 

routes, while that of sight III was piloted 

through line of sight (LOS) route, such 

that there were no obstructions between 

the BS and user equipment terminal. A 

snap shot of data collection in route I is 

revealed in figure 3. All the test equipment 

were connected together with USB cables 

and housed in a Gulf car before the field 
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drive test measurement. Also, both the 

Samsung handsets and the HP laptop were 

both enhanced with Telephone Mobile 

Software (TEMS, 15.1 version), which 

enable us to access, acquire and extract 

signal power data, including serving BS 

information after measurement. A total of 

1,502 signal power data points were 

extracted for further analysis using 

MapInfo and Microsoft Excel 

spreadsheet.  

The measured signal power, which is 

called RSRP, is related to electric field 

strength, EFS by (Isabona, et al, 2013): 

AGdBmRSRPmdBEFS +−= )()/( µ     (25) 

8.145
4

64.1
log10 +




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
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π
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A                (26) 

where, G is the antenna gain in dB, λ  is 

the signal transmitting wavelength in m 

and RSRP indicates Reference Signal 

Receive Power.

Table 1: Measurement Campaign Parameters in LTE Network 
 Site I Site II Site III Site IV Site V 

Parameter                               Value 

Operating Frequency (MHz) 2600  2600 2600  2600  2600  

BS Antenna Height (m) 28 30 45 32 38 

BS antenna gain (dBi) 17.5 17.5 17.5 17.5 17.5 

Transmit power (dB) 43 43 43 43 43 

Feeder Loss (dB) 3 3 3 3 3 

Transmitter cable loss (dB) 0.5 0.5 0.5 0.5 0.5 

Mobile antenna height (dB) 1.5 1.5 1.5 1.5 1.5 

RESULTS AND DISCUSSION 

Displayed in figures 1 to 5 are 

acquired stochastic electric field strength 

data via drive test over the period of 

measurement in each study terrain sites. 

Their stochastic fading distributions 

characteristics are shown in Figure 6 (a-f) 

using the six probability distribution 

models (i.e. Normal, lognormal, 

Nakagami, Rician, Weibull and Rayleigh 

distributions). Figure 7 (a-f) reveals the 

corresponding cumulative distribution 

functions (CDFs) model fittings 

connected to the pdfs depicted in Figure 

6(a-f). A fluctuating fading pattern of 

measured field strength along the 

measurement locations can been seen in 

all the Figures of 1 to 5 and this is roughly 

constant across the study location sites. 

The scenario can be attributed to the 

uneven proliferation of natural and man-

made obstructions between the 

transmitting and mobile station antenna.  

More importantly, to ascertain how 

accurately each statistical distribution fits 

with the measured electric field strength 

data, the estimated Maximum Likelihood 

Parameter Estimation method were 

considered as benchmark. Also, to reveal 

how well the investigated distribution 

function models fit into the stochastic 

fading behaviour of the measured electric 

field strength data, MLE statistics were 

further explored and the resultant 

estimated values using MLE are revealed 

in table 2. From the table, the lognormal 

distribution model fitting display the best 

maximum log likelihood values of -312 

and 415 in locations 1 and 2. It is an 

indication that lognormal distribution 
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model is a better fit to the measured 

electric field strength data in the two 

locations compared to other distributive 

models. As revealed in from table 2, while 

Nakagami model gave the optimal 

maximum log likelihood estimate in 

location 3, Normal and Rician models 

provided the best maximum log likelihood 

estimates of -200 and 210 in locations 4 

and 5, respectively.  Unlike the results in 

(Abiodun and Ojo, 2019),  different 

distributive fitting results on the measured 

electric field strength data in the 

respective locations is revealed in this 

work; it simply shows that one particular 

distributive model cannot be generalized 

as a fitting model to the study locations. 

Such performances may be attributed to 

differences that exist in building height 

structures, roof tops, street/roads widths 

around the five study location sites. In 

general, the graphs in figure 2 (a-f) clearly 

shows that Rayleigh and Weibull 

distribution displayed the poorest fits to 

empirical electric field strength. This 

simply implies that there are no multiple 

paths of condensed scattered electric field 

signals reaching a receiver along the 

measurement routes in the study location 

sites

Fig. 1: Stochastic electric field strength 

data in Site location I 

 
Fig. 2: Stochastic electric field strength 

data in Site location II 

 
Fig. 3: Stochastic electric field strength 

data in Site location III 

 
Fig. 4: Stochastic electric field strength 

data in Site location IV 
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Fig. 5: Stochastic electric field strength 

data in Site location V 

 
Fig. 6 (a): Stochastic electric field strength 

data with different PDFs fitted plots in Site 

location I 

 
Fig. 6 (b): Stochastic electric field strength 

data with different PDFs fitted plots in Site 

location II 

 
Fig. 6 (c): Stochastic electric field strength 

data with different PDFs fitted plots in Site 

location III 

 
Fig. 6 (d): Stochastic electric field strength 

data with different PDFs fitted plots in Site 

location IV 

 

 
Fig. 6 (f): Stochastic electric field strength 

data with different PDFs fitted plots in Site 

location V 
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Fig. 7 (a): Stochastic electric field strength 

data with different CDFs fitted plots in 

Site location I 

 
Fig. 7 (b): Stochastic electric field strength 

data with different CDFs fitted plots in 

Site location I 

 
Fig. 7 (d): Stochastic electric field strength 

data with different CDFs fitted plots in 

Site location IV 

 

 
Fig. 7 (f): Stochastic electric field strength 

data with different CDFs fitted plots in 

Site location V

                                    Fig. 7 (c): Stochastic electric field strength data 

                                    with different CDFs fitted plots in Site location III 
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Table 2: Statistical Maximum Likelihood Estimation Parameters and Values 
                                 Location  

Distribution 

function 

MLE Parameters 1 2 3 4 5 

Normal Log likelihood Estimate -518 -421 -318 -187 -200 

Mean 26.63 37.41 24.70 20.33 24.92 

Variance 56.57 55.97 70.19 55.14 156.40 

Lognormal Log likelihood Estimate -510 -412 -319 -212 -208 

Mean 26.65 37.39 24.82 22.08 26.59 

Variance 57.56 51.22 87.51 259.61 463.95 

Nakagami Log likelihood Estimate -514 -417 -316 -194 -200 

Mean 26.68 37.44 24.71 19.85 24.58 

Variance 53.90 52.67 69.00 73.08 170.20 

Rayleigh 

 

Log likelihood Estimate -554 -490 -331 -196.50 -200 

Mean 24.52 33.80 23.10 19.16 24.66 

Variance 164.35 312.27 145.90 100.32 166.23 

Rician Log likelihood Estimate -517 -421.39 -318 -188 -199 

Mean 26.64 37.41 24.70 20.35 25.11 

Variance 56.13 55.51 69.40 53.24 144.06 

Weibull Log likelihood Estimate -520 -431 -317.80 -191.24 -200 

Mean 26.60 37.13 27.59 20.09 24.82 

Variance 62.97 77.13 71.39 52.71 156.80 

 

CONCLUSION 

Through the use of the detailed 

maximum likelihood estimator in 

correspondent with different stochastic 

distribution models, the statistical fading 

characteristic of measured electric field 

strength data acquired in five uneven 

microcellular urban terrains of deployed 

LTE broadband communication channels 

has been investigated and analyzed in this 

research work. From the results summary, 

the lognormal distribution model fitting 

display the maximum log likelihood 

values of -510 and -412 in locations 1 and 

2. It is an indication that lognormal 

distribution model is better fit the 

measured electric field strength data in the 

two locations compared to other 

distributive models. Also from the results, 

while Nakagami model gave the 

maximum log likelihood estimate of -316 

in location 3, Normal and Rician models 

provided the maximum log likelihood 

estimates of -194 and -199 in locations 4 

and 5, respectively. These different 

distributive fitting results on the measured 

electric field strength data in the 

respective locations clearly reveals that 

one particular model cannot be 

generalized as a fitting function terrain. It 

is also mainly caused by differences that 

exist in building height structures, roof 

tops, street/roads widths in the five study 

locations 
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