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ABSTRACT 

Bandwidth (smoothing parameter) is considered the most crucial parameter in the 

application of nonparametric regression model. For the purpose of selecting adaptive 

bandwidths for the Local Quadratic Regression (LQR) in the response surface settings, 

we present a modified Prediction Error Sum of Square (PRESS) criterion using a penalty 

term derived from the sum of the range of kernel weights at each of the data points. LQR 

is applied to a multiple response problem from the literature using the current PRESS 

criterion and the proposed version for optimal bandwidth selection. The proposed 

criterion gives comparatively better regression and optimization results than the current 

PRESS criterion. The Sum of Squared Error (SSE) and the Coefficient of Determination 

(��) (both of which indicate the degree of closeness of the fitted values of the response to 

the raw data) were used as the basis for comparing model performance and goodness-of-

fit. In order to compare the version that meets the process specifications for each of the 

three responses simultaneously, the desirability measure (function) was applied. The 

results presented show that the proposed version of the PRESS criterion gives the smallest 

SSE (0.2127, 10.0027 and 65720 for ��, �� ��	 �
, respectively) and the largest �� 

(99.2598, 97.2309 and 92.3804 for ��, �� ��	 �
, respectively) across the three responses 

in the study. The proposed version gives a desirability measure of 69.0639% trumping 

that of the existing version which gives a desirability measure of 40.7450%. A desirability 

measure of 69.0639% indicates that the proposed version meets approximately 70% of 

the process specification. 

 

KEYWORDS: Desirability function, hat matrix, local quadratic regression, PRESS 

criterion, response surface study, process specification 

 

Introduction 

Response surface methodology is a 

collection of mathematical and statistical 

tools for studying the relationship 

between two or more variables (Vivek et 

al., 2021). In the data modeling phase of 

RSM, it is assumed that the relationship 

between a response variable � and a � 

explanatory variables ��,  ��, … , ��, 
takes the form: �� = �����,  ���, … , ���� + �� ,    � = 1, … , � (1) 
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where �� is the output at the ��� data 

point, ���, � = 1,2, … , �, is the value of 

the ��� explanatory variable at the ��� 

data point, � represents the true but 

unknown function that depicts the exact 

mathematical relationship between the 

variables, �� is a random error term 

assumed to be independent, identically 

distributed with mean zero and constant 

variance ��,  and � is the sample size 

(Castillo, 2007; He et al., 2012; 

Rajewski and Dobrzynaska-Inger, 

2021). 

The traditional regression model for 

estimating � in (1) is the Ordinary Least 

Squares (OLS) (Myers, 1999; Myers et 

al., 2009). However, if the data consists 

of salient patterns and trends that might 

be overlooked by OLS, nonparametric 

regression models could provide better 

alternatives (Wan and Birch, 2011; 

Depalma et al., 2021; Ryu et al., 2021).   

Mathematically, LQR estimate ��(� !)
 

of �� takes the form: 

 

 �#�(� !) = $%&('(& )%'()*+'(& )%,,          (2) 

 

where , is an � ×  1 vector of response, )% is an � ×  � diagonal matrix of 

weights for estimating ��, $%& is the ��� row vector of the LQR model matrix '(, '(&  is the transposed LQR model 

matrix whose general form is given by:  

'( =
⎣⎢
⎢⎡1 ��� ���1 ��� ���⋮1 ⋮�2� ⋮�2�

     ⋯ ��� ����⋯ ��� ����⋱⋯ ⋮�2� ⋮�2��      ���� ⋯ �������� ⋯ ����⋮�2�� ⋱… ⋮�2�� ⎦⎥
⎥⎤

, 

 

In matrix form, the vector of LQR 

estimates presented in (2) is expressed 

as: 

 

⎣⎢⎢
⎢⎡,8+(9:;)
,8<(9:;)⋮,8=(9:;)⎦⎥⎥

⎥⎤ = ⎣⎢⎢
⎢⎡$+('(& )+'()*+'(& )+$<('(& )<'()*+'(& )<⋮$=('(& )='()*+'(& )=⎦⎥⎥

⎥⎤ >,+,<⋮,=
?,    (3) 

 

 

=
⎣⎢⎢
⎢⎡@+(9:;)A(B)@<(9:;)A⋮ (B)
@=(9:;)A(B)⎦⎥⎥

⎥⎤ >,+,<⋮,=
?,    (4) 

 

 = C(9:;)(B),,          (5)

  

 

where  @%(9:;)A(B) =D@%+(9:;)@%<(9:;) … @%=(9:;)E is the ��� row 

vector of the � ×  � LQR Hat matrix, C(9:;)(B). 

If all the quadratic terms in the LQR 

model matrix '( are deleted, LQR 

reduces to local linear regression 

(Anderson-Cook and Prewitt, 2005; 

Eguasa et al., 2022).  

The FGℎ entry, say IJJ of the weight 

matrix )K for estimating �L is obtained 

from the product kernel given as:  

 

 ILJ = ∏�N�� O DPQR*PSRTS E ∑ ∏�N�� O DPQR*PVRTV E2�N�W ,    � = 1,2, … , �,   (6) 

where O DPQR*PSRTS E = X*DYQRZYVR[S E\
 is the 

simplified Gaussian function which 

assigns relatively heavier weights to the 

observations close to �L� than those far 

from �L�, and ]�, � = 1,2, … , �, are 
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referred to as the local or locally adaptive 

bandwidths which reduce to a fixed or 

global bandwidth ] in situations where 

we have ]� = ]� … = ]2 = ] (Edionwe 

and Mbegbu, 2014). 

In nonparametric regression 

procedure, the values, ��� of the 

explanatory variables are transformed 

such that 0 ≤ ��� ≤ 1, and consequently, ]�, � = 1,2, … , �, are constrained to lie in 

the interval 0 < ]� ≤ 1 (Edionwe et al., 

2016).  

A model for selecting local bandwidths 

presented in Edionwe et al. (2018) is 

given by: 

 

 ]� = a(bc*dV)b(c2*�)  ,   (7) 

where e ≥ 0 and g > 0 are data-driven 

tuning parameters and i = ∑ ��2� .  

For small-sample studies such as 

RSM, the PRESS** criterion developed 

by Mays et al (2001) for selecting 

bandwidths in the application of both 

nonparametric and semiparametric 

regression models is given by:    

 

  j�kll∗∗(B) = ∑ DdV*d#V,ZV(nop)(B)E\qVrs   t2*�JDC(nop)(B)Euvt(2*�*�)DwwxyzYZwwx(B)wwxyzY Eu,      
          =  {!|}}   ~�vt(2*�*�)DwwxyzYZwwx(B)wwxyzY Eu’ (8) 

 

where llk��P = ∑ D�� −2�N��#�(� !)(B)E�
 is the maximum Sum of 

Squared Errors obtained as b tends to 

infinity, llk(B) is the Sum of Squared 

Errors for a given vector of bandwidths, B = (]�, ]�, … , ]2), Degree of Freedom 

(DF)=  � − GF�C(� !)(B)�, GF�C(� !)(B)� is the sum of the diagonal 

elements of the LQR Hat matrix for a 

given vector of bandwidths, B =(]�, ]�, … , ]2), and �#�,*�(� !)(B) is the 

leave-one-out estimate of �� with the ��� 

observation left out. 

In applying (7) to generate 

bandwidths for a given data, we search 

for the optimal values, e∗and g∗, of C 

and N, respectively, that give the optimal 

local bandwidths for minimizing the j�kll∗∗(B) criterion.   

The phase succeeding the data 

modelling phase in RSM is the 

optimization phase, where the setting of 

the explanatory variables that optimize 

the fitted regression model according to 

the process specifications (or production 

requirements) is sought.   

In studies that involve say � 

responses, � > 1, the goal is to obtain 

the setting of the explanatory variables 

which simultaneously optimize the � 

fitted models with respect to their 

individual process specifications 

(Harrington, 1965; Derringer and Suich, 

1980). A few criteria for carrying out 

multiple response optimization exist 

amongst which the desirability measure 

(function) stands out. The desirability 

function, with respect to the process 

specification of individual response, 

transforms the fitted model, �#�($), into 

a scalar measure, 	� D�#�($)E,  � =1,2, … , �, after which the setting of  

each of the explanatory variables that 
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maximize the geometric mean of the � 

transformed scalar measures is 

subsequently sought (Wan and Birch, 

2011).  

The classifications of 	� D�#�($)E 

based on the process specification of the 

responses is as follows: 

If the response is of nominal-the-better 

(NTB) type where the ��� response 

acceptable value lies between an upper 

limit, U and a lower limit, L, 	� D�#�($)E 

is given as: 

	� D�#�($)E =
⎩⎪⎨
⎪⎧ 0�d#�($)*�∅*� � �#�($) < �         � ≤  �#�($) < ∅,��*d#�($)�*∅ �          ∅ ≤ �#�($) ≤  �,0 �#�($) >  �,

     (9) 

where ∅ is the target value of the ��� response. 

If the goal is to maximize the ��� response, 	� D�#�($)E is given by a one-sided 

transformation as: 

 	� D�#�($)E =  � 0�d#�($)*�∅*� �1
�#�($) < �,        � ≤ �#�($) ≤ ∅�#�($) > ∅, ,     (10) 

where ∅ is interpreted as a large enough value of the ��� response.  

If the goal is to minimize the ��� response,	� D�#�($)E is given by a one-sided 

transformation as: 

	� D�#�($)E     = � 1��*d#�($)�*∅ �0
�#�($) < ∅,        ∅ ≤ �#�($) ≤ ��#�($) > �, ,    (11) 

where ∅ is a small enough value of the ��� response. 

The overall objective of the desirability criterion is getting the values of the explanatory 

variables that maximize the geometric mean (D) of all the individual desirability measures 

given as: � = �������X �D∏ 	� D�#�($)E��N� E� �⁄ � × 100%,     (12) 

The remainder of this paper is organized as follows: A review of the j�kll∗∗(B) 

criterion is given in Section 2 and a modified version is presented in Section 3. Section 4 

presents comparison of results from the application of the proposed criterion with that of 

the j�kll∗∗(B) criterion. The paper concludes in Section 5. 

The Penalizing Factor of the �;���∗∗(B) vis-à-vis the Flexibility of the LQR Hat 

Matrix 

In general, the � ×  � diagonal matrix weights )K derived from (6) for estimating �L can be expressed as:  

Edionwe & Osemwenkha A Modified Prediction Error Sum of Square Criterion 
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)K = >I�� 0 ⋯ 00 I�� ⋯ 0⋮0 ⋮0 ⋱  0… I�2
?,  

       =

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡� ∏ �Z�YQRZYsR[s �\ Rrs

∑ ∏ �Z�YQRZYVR[V �\ RrsqVrs
¡ 0 ⋯ 0

0 � ∏ �Z�YQRZY\R[\ �\ Rrs
∑ ∏ �Z�YQRZYVR[V �\ RrsqVrs

¡ … 0
⋮0 ⋮0 ⋱⋯

⋮
� ∏ �Z�YQRZYqR[q �\ Rrs

∑ ∏ �Z�YQRZYVR[V �\ RrsqVrs
¡⎦⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎤

, 

 

According to Fan and Gijbels (1996), 

Mays and Birch (1998), the advantage of 

LQR over OLS is its flexibility which is 

a function of the choice of bandwidths 

that are selected for the procedure.   

In situations where ]�, ]�, …, ]2 all tend 

to 1 and above in (3), the elements of )+, )<, … , )= which respectively 

form part of the row vectors @+(9:;)A(B), @<(9:;)A(B), … , @=(9:;)A(B), 

all would return the same value, say I. 

That is I�� = I�� = ⋯ = I22 = I, 
and consequently, )+ = )< = ⋯ =)=. In this case, assuming that the same 

model matrix '( is used for OLS 

procedure, we will get ,8+(9:;) = ,8+(¢9�), ,8<(9:;) = ,8<(¢9�), … , ,8=(9:;) = ,8=(¢9�), 
meaning that LQR returns the same 

vector of estimated responses as that of 

the OLS. On the other hand, the more 

distinct or dissimilar the elements of )+, )<, … , )= in the vectors @+(9:;)A(B), @<(9:;)A(B), … , @=(9:;)A(B), 

respectively, the higher the flexible of 

the resulting LQR over that of the OLS.    

The advantage of nonparametric 

regression models over their parametric 

counterpart is flexibility and, one of the 

ways to upgrade the flexibility of LQR is 

to ensure that the bandwidths selected 

allow the 1 × � elements of each of the 

vectors @%(9:;)A(B) =D@%+(9:;)@%<(9:;) … @%=(9:;)E, � = 1,2, … , �, 
to be as distinct from one another as 

possible. Distinctiveness implies 

variability. Statistically, the range is 

directly proportional to variability. 

Hence, the range of the � elements of 

each of the rows of the Hat matrix should 

be as high as possible.  

We highlight two shortcomings of the 

DF as it relates to its computation in the j�kll∗∗(B) criterion: 

One, the DF is not a function of the 

variability (or the range) of the elements 

of the row vectors of the LQR Hat matrix 

and so does not in any way enhance the 

flexibility of the LQR. 

Two, �£ = � − GF�C(� !)(B)�, where GF�C(� !)(B)� is the sum of the diagonal 

BIU Journal of Basic and Applied Sciences Vol. 8 no. 1 (2023) 
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elements of the LQR Hat matrix, makes 

use of only � of the � times � = �� 

elements of the Hat matrix, neglecting 

the remaining �(� − 1) = �� − � 

elements. This negligence has negative 

consequences on the regression 

procedure since the unused �� − � 

elements contain important information 

about the data under study.    

Thus, there is a need for the inclusion of 

an appropriate statistic in the penalizing 

factor of the j�kll∗∗(B) in order to 

address these shortcomings.  

Methodology for the Modification of 

the Penalizing Factor in the �;���∗∗(B) Criterion  

In the modification of the j�kll∗∗(B) criterion, we seek to 

achieve the following objectives: 

i. to provide for the inclusion of a 

penalizing factor that utilizes every 

bit of information which the entire �� elements of the LQR Hat matrix 

can provide. 

ii. to provide for the inclusion of a 

penalizing factor that allows the 

flexibility of LQR to be over and 

above that of the OLS. 

 

If the proposed modified j�kll∗∗(B) criterion is designated by j�kll¤J(B), then j�kll¤J(B) may be given by: j�kll¤J(B) = {!|}} t(2*�*�)DwwxyzYZwwx(B)wwxyzY Eu ,     (9) 

where ¥ is a function of a statistical measure that encapsulates objectives (i) and (ii) 

above. 

From Section 2, it is shown that the increase in the flexibility of the LQR derives from 

the increase in variability (or increase in the range) of the � elements in each of the 

rows of LQR Hat matrix. Hence, we compute the range of the � elements in each 

vector @%(9:;)(B) = D@%+(9:;)@%<(9:;) … @%=(9:;)E, � = 1,2, … , �, of the LQR Hat matrix. 

This gives a � ×  1 vector of range, say ; =
⎝
⎜⎜⎛

F��©X D@+(9:;)(B)EF��©X D@<(9:;)(B)E⋮F��©X D@=(9:;)(B)E⎠
⎟⎟⎞, for a given vector 

of bandwidths, B.   

Next, we get the sum of the range in ;. That is ∑ ; = ∑ F��©X(@%(9:;)(B))2�N� .  
Finally, in order to ensure that the proposed modified j�kll∗∗(B) selects bandwidths 

according to objective (ii) above, we will have ¥ given by: ¥ = ∑ F��©XD@%(9:;)(B)E2�N� − ∑ F��©XD@%(¢9�)E2�N� .  
where F��©XD@%(¢9�)E, � = 1,2, … , �, is the range of the elements in the ��� row of the � 

by � OLS Hat matrix, C(¢9�).  
Therefore, the proposed bandwidths selection criterion reduces to comes out as: 

 

Edionwe & Osemwenkha A Modified Prediction Error Sum of Square Criterion 
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j�kll¤J(B) = {!|}}t(2*�*�)DwwxyzYZwwx(B)wwxyzY Eut∑ J�2®��@%(9:;)(B)�qVrs *∑ J�2®��@%(9:;)(B)�qVrs u,      (10) 

 

Clearly, the statistic, ∑ ; = ∑ F��©X(@%(9:;)(B))2�N�  is computed from the entire �� 

elements of the LQR Hat matrix. Further, j�kll¤J(B) is minimized at a given vector 

of bandwidths, B at which the difference ∑ F��©X �@%(9:;)(B)�2�N� −∑ F��©X �@%(9:;)(B)�2�N�  (that is the flexibility between the LQR and OLS) is as large 

as possible. 

Application  

LQR that utilizes the proposed j�kll¤J(b) criterion for bandwidths 

selection (herein designated �¥�* for 

ease of reference) is applied to two 

multiple response problems from RSM 

literature and two sets of simulated data 

and results compared with those from 

OLS and LQR that utilizes the j�kll∗∗(B) criterion.  

The performance statistics for 

comparison include SSE and Coefficient 

of Determination, (��), which 

respectively indicate the nearness of the 

fitted responses to the observed values 

and a measure of variability in the data 

that is explained or captured by each 

regression model.  

For each model, the values of the sum 

of the range, ∑ F��©XD@%(.)E2�N�  of the 

elements in each row of the Hat matrix is 

presented under the column labelled 

SRR in Table 4.  For the comparison of 

optimization results, the values of 

desirability measures in (4*) in the 

Appendix were used. The best value for 

each performance statistics (goodness-

of-fit and optimization solution) are 

shown in bold. 

 

 

 

The Chemical Process Data 

This problem originates from 

Montgomery (2005) were it was 

analyzed using OLS. It involves three 

response variables, namely the �� 

(yield), �� (viscosity), and �
 (molecular 

weight). Two inputs (factors) were found 

to influence these responses: reaction 

time (��) and temperature (��). A full 

second-order polynomial were found to 

be adequate for each of the response 

variables.  

The process specifications for each 

response are as follows: 

Maximize �� with lower limit � = 78.5, 
and target value, ∅ = 80; �� is to take a value in the range of � =62 and � = 68 with target value, ∅ =65; 

Minimize �
with upper limit � = 3300 

and target value, ∅ = 3100.  

The data, collected via a Central 

Composite Design (CCD), is presented 

in Table 1. The optimal tuning 

parameters for the nonparametric models 

based on j�kll¤J(B) and j�kll∗∗(B) 

for �¥�* and LQR, respectively, are 

given in Table 2, and the corresponding 

locally adaptive bandwidths are shown 

in Table 3. The goodness-of-fit and 

optimization results for each of the 

regression models are presented in 

Tables 4 and 5, respectively. 
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Table 1: The chemical process data     

 

 

 

 

 

 

 

 

 

Table 2: Optimal tuning parameters for the chemical process data 

 

 
 

 

 

 

 

 

Table 3: Bandwidths obtained from optimal tuning parameters in Table 2 
 

 

 

                                                  

 

 

 

 

 

 

                                                  

 

 

 

 

 

 

 

 

I �� �� �� �� �
 

1 0.1464 0.1464 76.5 62 2940 

2 0.8536 0.1464 78.0 66 3680 

3 0.1464 0.8536 77.0 60 3470 

4 0.8536 0.8536 79.5 59 3890 

5 0.0000 0.5000 75.6 71 3020 

6 1.0000 0.5000 78.4 68 3360 

7 0.5000 0.0000 77.0 57 3150 

8 0.5000 1.0000 78.5 58 3630 

9 0.5000 0.5000 79.9 72 3480 

10 0.5000 0.5000 80.3 69 3200 

11 0.5000 0.5000 80.0 68 3410 

12 0.5000 0.5000 79.7 70 3290 

13 0.5000 0.5000 79.8 71 3500 

Response Models g∗ e∗ �� 
LQR 6.3536 0.0797 

  LQR* 3.3938 0.0846 �� 
LQR 5.3234 0.0228 

  LQR* 3.6232 0.0192 �
 
LQR 5.9081 0.0884 

  LQR* 2.4242 0.0884 

 % 

,+ ,< ,´ 

LQR LQR* LQR LQR* LQR LQR* 

1 0.8298 0.3270 0.3787 0.2591 0.8558 0.3512 

2 0.5710 0.2770 0.4143 0.2818 0.1901 0.0780 

3 0.7435 0.3103 0.3609 0.2477 0.3790 0.1555 

4 0.3122 0.2270 0.3520 0.2420 0.0012 0.0005 

5 0.9851 0.3570 0.4587 0.3101 0.7838 0.3216 

6 0.5020 0.2636 0.4321 0.2931 0.4780 0.1961 

7 0.7435 0.3103 0.3343 0.2307 0.6669 0.2736 

8 0.4848 0.2603 0.3432 0.2364 0.2351 0.0965 

9 0.2432 0.2136 0.4676 0.3158 0.3700 0.1518 

10 0.1742 0.2003 0.4410 0.2988 0.6219 0.2552 

11 0.2260 0.2103 0.4321 0.2931 0.4330 0.1777 

12 0.2777 0.2203 0.4498 0.3045 0.5410 0.2270 

13 0.2605 0.2170 0.4587 0.3101 0.3521 0.1445 
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Table 4: Goodness-of-fit of the regression models for the chemical process data 

 

 

 

 

 

 

 

From Table 4, we observe that �¥�∗ 

gives better SSE and R2 across the three 

responses, signifying a model of better 

fit than the OLS and LQR. Further, �¥�∗ 

has largest l�� across the three 

responses as well. 

 
Fig. 1: Graphical comparison of plots of residuals of response estimates 

 

From Figure 1, the plots of residuals of �#� (Top Left), �#� (Top Right), and �#
 

(Bottom Left) show that those from the 

LQR* are seen to lie relatively closest to 

the zero residual lines, indicative of 

relatively better fit of the LQR* to the 

given data. 

Table 5: Optimization results based on the desirability measure for the chemical process data 
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zero residual line

OLS

LQR

LQR*

Response Model �;���∗∗ �;���µ¶ DF �;; SSE ;< ,+ OLS - - 7.0000 6.0003 0.4962 98.2735 

LQR 0.2526 - 6.5802 7.1504 0.4468 98.4456 

LQR* - 0.1628 4.0748 8.9457 0.2127 99.2598 ,< OLS - - 7.0000 6.0003 36.2242 89.9720 

LQR 13.0953 - 4.9192 8.2690 12.4398 96.5563 

LQR* - 7.0752 4.0270 8.9784 10.0027 97.2309 ,´ OLS - - 7.0000 6.0003 207870 75.8990 

LQR 82840 - 5.0093 8.4253 77067 91.0648 

LQR* - 43674 4.0006 8.9999 65720 92.3804 

Models $+ $< Max(,8+) ∅(,8<) ·¸¹ (,8´) d(,8+) d(,8<) d(,8´) D(%) 

OLS 0.4449 0.2226 78.7616 66.4827 3229.9 0.1744 0.5058 0.3504 31.3800 

LQR 0.4892 0.2093 78.7993 66.1764 3188.5 0.1996 0.6079 0.5576 40.7450 

LQR* 0.4451 0.2152 78.9944 65.0015 3085.8 0.3296 0.9995 1.0000 69.0639 
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The results presented in Table 5 show 

that �¥�∗ found a better setting of the 

explanatory variables that 

simultaneously optimizes the three 

responses with a desirability measure of 

69.0639%, indicating a product that 

meets approximately 70% of the 

production requirements as compared 

with the 41% for the LQR. The enhanced 

flexibility of LQR enables its 

exploration of the solution space for 

better optimal results. 

 

CONCLUSION 

In this paper, we proposed a 

modification of the PRESS** criterion 

to suit the selection of bandwidths for 

LQR in the response surface settings. 

The modified PRESS** criterion, 

designated j�kll¤J  criterion, involves 

the replacement of the DF term in the 

denominator of the PRESS** criterion 

with the difference in the sum of the 

range of the rows of the Hat matrix of the 

LQR and that of the OLS models. This 

was done in order to improve on the 

flexibility of the LQR model which 

happens to be the most appealing feature 

of nonparametric regression models in 

general.  

From the data analyzed, LQR 

utilizing j�kll¤J  (designated �¥�∗) 

gives the best SSE and R2 in the three out 

of the three responses in the problem 

taken from literature. Much more 

significantly, �¥�∗gives superior 

optimization results, trumping those 

from OLS and the LQR. Specifically, 

better optimization result (Table 5) 

translates to better use of scarce 

resources (raw material, time, e.tc).  

 

 

 

REFERENCES 

Anderson-Cook, C. M. and Prewitt, K. 

(2005). Some guidelines for using 

nonparametric models for 

modeling data from response 

surface designs, Journal of 

Modern Applied Statistical 

Models, 4: 106-119. 

Castillo, D. E. (2007). Process 

optimization: A statistical method. 

New York: Springer International 

Series in Operations Research and 

Management Science. 

DePalma, K., Smith, B. and McDonald, 

A. G. (2021). Synergistic effects of 

processing parameters on the 

biochemical and physical 

properties of tofu made from 

yellow field pea (Pisum sativum), 

as determined by response surface 

methodology. Food Sci. Nutr. 9: 

1132-1142. 

Derringer, G. and Suich, R. (1980). 

Simultaneous optimization of 

several response variables, 

Journal of Quality Technology, 

12(4): 214 – 219.  

Edionwe, E. and Mbegbu, J. I. (2014). 

Local bandwidths for improving 

the performance statistics of model 

robust regression 2, Journal of 

Modern Applied Statistical 

Methods, 13(2): 506-527. 

Edionwe, E., Mbegbu, J. I. and Chinwe, 

R. (2016). A new function for 

generating local bandwidths for 

semiparametric MRR2 model in 

response surface methodology, 

Journal of Quality Technology, 

48(4): 388 –404. 

Edionwe, E., Mbegbu, J. I., Ekhosuehi, 

N., Obiora-Ilouno, H. O. (2018). 

Edionwe & Osemwenkha A Modified Prediction Error Sum of Square Criterion 



69 

 

An improved robust regression 

model for response surface 

methodology. Croatian 

Operational Research Review, 9: 

317 – 330. 

Eguasa, O., Edionwe E. and Mbegbu J. 

I. (2022). Local Linear Regression 

and the Problem of 

Dimensionality: A Remedial 

Strategy via a New Locally 

Adaptive Bandwidths Selector, 

Journal of Applied Statistics, DOI: 

10.1080/02664763.2022.2026895 

Fan, J. and Gijbels, I. (1996). Local 

polynomial modeling and its 

applications. Chapman and Hall, 

London. 

Harrington, E. C. (1965). The 

desirability function, Industrial 

Quality Control, 21(10): 494 – 

498. 

He, Z., Zhu, P. F. and Park, S. H. (2012). 

A robust desirability function for 

multi-response surface 

optimization, European Journal of 

Operational Research, 221: 241-

247.  

Mays, J. E., Birch, J. B. and Starnes, B. 

A. (2001). Model-robust 

regression: combining parametric, 

nonparametric, and semi-

parametric models, Journal of 

Nonparametric Statistics, 13: 245-

277. 

Mays, J. E. and Birch, J. B. (1998). 

Smoothing considerations in 

nonparametric and semiparametric 

regression, Technical Report 

Number 98-2, Department of 

Statistics, Virginia Polytechnic 

Institute and State University. 

Montgomery, D. C. (2005). Design and 

analysis of experiments. Sixth ed. 

Wiley, New York. 

Myers, R. H. (1999). Response surface 

methodology - current status and 

future directions. Journal of 

Quality Technology, 31: 30-44. 

Myers, R., Montgomery, D. C. and 

Anderson-Cook, C. M. (2009). 

Response surface methodology: 

process and product optimization 

using designed experiments. 3rd 

Edition, Wiley, ISBN: 978-0-470-

17446-3.  

Rajewski, J. and Dobrzynska-Inger, A. 

(2021). Application of Response 

Surface Methodology (RSM) for 

the Optimization of Chromium 

(III) Synergistic Extraction by 

Supported Liquid Membrane, 11, 

854, 1-17 

Ryu, D. H., Cho, J. Y., Sadiq, N. B., 

Kim, J. C., Lee, B., Hamayun, M., 

Lee, T. S., Kim, H. S., Park, S. H. 

and Nho, C. W. (2021). 

Optimization of antioxidant, anti-

diabetic, and anti-inflammatory 

activities and ganoderic acid 

content of differentially dried 

Ganoderma lucidum using 

response surface methodology. 

Food Chem., 335: 127645. 

Vivek, K., Mishra, S. and Pradhan, R. C. 

(2021), Optimization of Spray 

Drying Conditions for Developing 

Nondairy Based Probiotic Sohiong 

Fruit Powder. J. Fruit Sci., 21(1): 

193-204. 

Wan, W. and Birch, J. B. (2011). A semi-

parametric technique for multi-

response optimization, Journal of 

Quality and Reliability 

Engineering International, 27: 47-

59. 

BIU Journal of Basic and Applied Sciences Vol. 8 no. 1 (2023) 


