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ABSTRACT 

Response Surface Methodology (RSM) comes handy when a researcher wants to 

determine the value of each of the explanatory variables that simultaneously optimize the 

response variables. In the modelling phase of RSM, a suitable regression model is fitted 

using the data generated from the experimental design phase. The fitted model is 

subsequently subjected to an appropriate optimization routine in order to obtain the 

optimal solution of the study. Currently, the semiparametric model robust regression 2 

(MRR2) model is considered the best regression model for handling data emanating from 

response surface studies. MRR2 is a hybrid model, combining estimates of the response 

(output) from both the local linear regression (LLR) and the ordinary least squares (OLS) 

via mixing parameters. When MRR2 is applied in response surface studies, the current 

philosophy entails the exclusion of interaction terms in the model matrix of LLR 

component of MRR2 irrespective of the statistical significance of the interaction terms in 

the OLS model matrix. In this paper, we present results for a problem from the literature 

in which the significant interaction terms in the OLS model matrix were duly included in 

LLR model matrix. A multiple response problem from the literature was used to justify 

the inclusion of the interaction terms in the LLR model matrix. It is found that the MRR2 

applied with the interaction terms included outperforms its counterpart both in terms of 

the goodness-of-fit statistics and the desirability-based optimal solutions. Specifically, 

the MRR2 with the proposed model matrix gives better prediction errors in the three 

responses as well as a desirability value of approximately 77.3% as against the 47.4% 

for the MRR2 which disregards the significant interaction terms in its model matrix.   
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INTRODUCTION 

Response Surface Methodology (RSM) is a collection of statistical tools that provide 
a means of establishing an empirical relationship between a � explanatory variables, ��, ��, … , �� and a response variable (�) of a system or process using data from designed 
experiments (Montgomery, 2005; Matys et al., 2022; Joudi-Sarighayeh et al., 2023). In 
the modeling phase of RSM, researchers assume that the relationship between the 
response variable, y and the � explanatory variables ��,  ��, … , ��, takes the form: �� = �����,  ���, … , ���� + �� ,    � = 1,2, … , �                     (1) 
where the mean function � denotes the true but unknown relationship between the 
response variable and the � explanatory variables, ���,  � = 1, … , �, � = 1, … , �,  are the 
values of the ��� explanatory variable at the ��� data point, ��, � = 1,2, … , �, are random 
error terms with the assumption that �~�(0,  �), and � is the sample size (Castillo, 
2007; Myers et al., 2009; Karlovic et al., 2023).  
Existing classes of regression models applied in the estimation of the unknown function � in (1) include the parametric regression model, the nonparametric regression model and 
the semi-parametric regression model (Anderson-Cook and Prewitt, 2005; Pickle et al., 
2008). However, for small-sample setting which is typical of RSM, the semi-parametric 
Model Robust Regression 2 (MRR2) is currently considered the best regression model 
(Wan and Birch, 2011; Eguasa et al., 2022).  

Mathematically, the MRR2 estimate, �!�("##�)of ��, � = 1,2, … , �, is given by: �!�("##�) = $%(&'&)()&'* + λ,-. /(&0'1%&0')()&0'1%(2 − (&'&)()&')*, (2) 

  = $%(&'&)()&'* + λ,-. /�&0'1%&0�()&0'1%4(567),       (3) 
where λ,, 0 ≤ 9� ≤ 1, � = 1,2, … , �, is the local mixing parameter for combining the 
OLS and the LLR estimates at the ��� data point, $%(&'&)()&'* is the OLS component 
which is the parametric regression component, $% is the ��� row vector of the � × ; OLS 
model matrix &, where ; is the number of model parameters, * is � × 1 vector of 
response, -. /(&0'1%&0')()&0'1%(2 − (&'&)()&')* is the LLR component,  -. / is the ��� row of the LLR model matrix &0, whose description and that of the one for OLS are 
both given in Section 2, 2 is an � × � identity matrix, 1% is a � × � diagonal weights 
matrix for estimating the ��� OLS residual, 4(567) is the � × 1 vector of the OLS residuals, &' and &0' are the transposed model matrices of the OLS and LLR, respectively (Mays 
et al., 2001; Pickle et al., 2008). 
The <=ℎ-entry say ?@ of weight matrix, 1%  is obtained from the Gaussian product kernel 
as: ?@∗∗ = ∏�C�� D EFGH(FIHJG K ∑ ∏�C�� D EFGH(FIHJG KM�C�N ,       � = 1,2, … , �, � = 1,2, … , �,   (4) 

where D EFGH(FIHJG K = O(PQGHRQIHSG TU
 is the simplified Gaussian kernel and V�, 0 < V� ≤ 1, � =1,2, … , �, are the locally adaptive or simply the local bandwidths (Mays et al., 2002). 

For data emanating from response surface studies, a model for selecting locally adaptive 
bandwidths presented in Edionwe et al. (2016) and Edionwe et al. (2018) is given by: 
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V� = J∗XY(Z[(\G)]Z([M(�) ,    � = 1, … , �             (5) 

where b* (which may be taken to be equal to 1) is the fixed optimal bandwidth, ^ =∑ ��M� , _ ≥ 0, � > 0 are data-driven tuning parameters whose optimal values _∗, �∗, 
respectively, generate a vector, Ф of � locally adaptive optimal 
bandwidths, [V�∗, V�∗, … , VM∗ ] based on the minimization of the penalized Prediction Error 
Sum of Squares (PRESS**) given by: efghh∗∗(Ф) =  ∑ E\G(\!G,RG(ijjU)(Ф)KUkGlm   M(�@nop�q(ijjU)(Ф)�r(M(�(�)sstuvQRsstФsstuvQ ’               (6) 

where ∑ E�� − �!�,(�("##�)(Ф)K�M�C�  is the Prediction Error sum of Squares (PRESS), hhgwnF 

is the maximum Sum of Squared Errors obtained as V�, V�, … , VM tend to infinity, hhgФ is 
the Sum of Squared Errors (SSE) for a specific vector of bandwidths Ф = [V�, V�, … , VM], =<�x("##�)� is the trace of the MRR2 hat matrix and �!�,(�("##�)(Ф) is the leave-one-out 
cross-validation estimate of �� with the ��� observation left out (Mays et al., 2001; Pickle 
et al., 2008).  
Similarly, a model for selecting the local mixing parameters proposed by Edionwe et al. 
(2017) is given by: 9�(O�) = Yy(Zy[yrpG)Zy([yMr�) ,    � = 1,2, … , �,       (7) 

where ẑ = ∑ O�M� , O� = |�� − ��(|}~)|, _z ≥ 0,  �z ≥ 0, are data-driven tuning 
parameters. The optimal values of _z and �z are herein designated as _z∗, �z∗, 
respectively. The optimal vector of mixing parameters generated from (7) is based on the 
minimization of a version of the PRESS** given by: 

efghh∗∗([9�, 9�, … , 9M])  = ∑ E\G(\!G,RG(ijjU)(Ф∗,[�m,�U,…,�k])KUkGlmM(�@Eq(ijjU)(Ф∗,[�m,�U,…,�k])Kr(M(�(�)sstuvQRsstФ∗[�m,�U,…,�k],sstuvQ ,    (8) 

where Ф∗=[V�∗, V�∗, … , VM∗ ] denotes locally optimal bandwidths that minimizes (7) above, hhgФ∗[�m,�U,…,�k] is the SSE for optimal bandwidths associated with a given vector of 

mixing parameters, [9�, 9�, … , 9M], =< Ex("##�)(Ф∗, [9�, 9�, … , 9M])K is the trace of 

MRR2 hat matrix given Ф∗ and [9�, 9�, … , 9M], �� = � −=< Ex("##�)(Ф∗, [9�, 9�, … , 9M])K, and �!�,(�("##�)(Ф∗, [9�, 9�, … , 9M]) is the leave-one-out 

cross-validation of MRR2 estimate of �� given the optimal bandwidths and a vector of 
mixing parameters, [9�, 9�, … , 9M].  
The MRR2 as presented in equation (2) may be expressed in matrix form as: 

�("##�) =
⎣⎢⎢
⎢⎡ℎ�("##�)
ℎ�("##�)⋮ℎM("##�)⎦⎥⎥

⎥⎤ �   = x("##�)�,                   (9) 
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where ℎ�("##�) = ��(�Z�)(��Z + λ,x.,(��Z��∗��Z)(���Z��∗(� − �(�Z�)(��Z) is the ��� row of the � × � MRR2 Hat matrix, x("##�).     
Once the mean function, �, in (1) has been modelled, the resulting fitted curve is 

subjected to some optimization routine in order to obtain the values of the explanatory 
variables that optimize the response based on the prescribed production requirements. For 
multiple response studies involving � > 1 response variables, an efficient optimization 
criterion for achieving this task is the desirability function (Harrington, 1975; Derringer 
and Suich, 1980; He et al., 2012). Given the production requirement of a response, the 
desirability function transforms the estimated response, �!($) into a response-type 
dependent scalar measure, �(�!($)). 

If the response is of nominal-the-better (NTB) type where the response acceptable 
value lies between an upper limit, U and a lower limit, L, �(�!($)) is given by: 

�(�!(�))=
⎩⎪⎨
⎪⎧ 0�\!($)(}∅(} � �!($) < �         � ≤  �!($) < ∅,��(\!($)�(∅ �          ∅ ≤ �!($) ≤  �,0 �!($) >  �,

  ,                (10) 

where ∅ is the target value of the given response. 
If the response is of larger-the-better (LTB) type, then the objective is to maximize the 
response and so �(�!($)) is given by a one-sided transformation as: 

�(�!($)) =  � 0�\!($)(}∅(} �1
�!($) < �,        � ≤ �!($) ≤ ∅�!($) > ∅, ,                   (11)  

where ∅ is interpreted as large enough value of the given response.  
The �(�!($)) of a smaller-the-better (STB) response is given by a one-sided 
transformation as: 

 �(�!($)) = � 1��(\!($)�(∅ �0
�!($) < ∅,        ∅ ≤ �!($) ≤ ��!($) > �, ,     (12) 

where ∅ is a small enough value of the given response. 
The overall objective of the desirability criterion is getting the values of the explanatory 
variables that maximize the geometric mean, D, of all the individual desirability 
measures given as: � = �������O�[�� × �� × … × �w]� w⁄ ¡,      (13) 
Model Matrices for MRR2 in RSM 

In this Section, we give an overview of the current make-up of the model matrices for 
OLS and LLR. The Section concludes with a presentation of a general form of the model 
matrix for LLR when the statistically significant interaction terms in the OLS model 
matrix is duly incorporated  
OLS Model Matrix in RSM 

Suppose that the entire terms in a second-order polynomial assumed for estimating the 
unknown function � in (1) are all significant, then the model matrix & of the OLS fitted 
to a data of sample size � and consisting of � explanatory variables takes the form: 
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& = ⎣⎢
⎢⎡1 ��� ⋯ ��� ���� ⋯ ���� ⋯ ������ ⋯ ��(�(�)���1 ��� ⋯ ��� ���� ⋯ ���� ⋯ ������ ⋯ ��(�(�)���⋮1 ⋮�M� ⋮⋯ ⋮�M� ⋮�M�� ⋮⋯ ⋮�M�� ⋮⋯ ⋮�M��M� ⋮⋯ ⋮�M(�(�)�M�⎦⎥

⎥⎤ 
 
where the column of ones, [1, 1, … , 1]Z, represents the intercept, ���, � = 1,2, … , �, � =1,2, … , �, denotes the value of the ��� explanatory variable at the ��� data point, ����  are 
the quadrature terms, and the interaction terms form the columns:  
 

⎣⎢⎢
⎡������ �����£ ⋯ ��(�(�)��������� �����£ ⋯ ��(�(�)���⋮�M��M� ⋮������ ⋮⋯ ⋮�M(�(�)�M�⎦⎥⎥

⎤
. 

 
It is sometimes the case that not all the terms in the above OLS model matrix are 

statistically significant or have significant effect on the response variable. In order to be 
sure of which terms to include in the OLS model matrix for a particular study, statistical 
tests such as ANOVA is conducted and the p-values for each term is read off the ANOVA 
table. The terms whose p-values are greater than 0.05 are considered statistically 
insignificant and, thus, discarded from the OLS model matrix. Other statistical tests 
carried out to determine significance of regression terms include the F-test (for 
simultaneously testing the significance of all the terms), and the t-test for testing the 
significance of the individual term (Agarwal, 2015). 
LLR Model Matrix for RSM 

LLR is one of the nonparametric polynomial regression models developed and applied 
originally in the setting of scatterplot smoothing where no consideration is ascribed to 
interaction terms between the independent variables (Fan and Gijbels, 1992; Fan and 
Gijbels, 1996; Loader, 1999; Hardle et al., 2005). Hence, when LLR was imported to 
response surface studies, whether as a stand-alone regression model or a hybrid 
combination with OLS, the traditional practice of leaving out the interaction terms was 
preserved (Pickle et al, 2008; Wan and Birch, 2011; Eguasa et al., 2022).  

Therefore, presently, the general form of the LLR model matrix &0 for a data that 
comprises � explanatory variables is given by: 

 

&0 = ¤1 �.�� ⋯ �.��1 �.�� ⋯ �.��⋮1 ⋮�.M� ⋮⋯ ⋮�.M�
¥ 

where �.��, � = 1,2, … , �, � = 1,2, … , �, denotes the value of the ���  explanatory variable 
at the ��� data point.  
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METHODOLOGY  

Essentially, an interaction term that is 
correctly declared statistically 
significant by a statistical test certainly 
would contain an important information 
regarding the degree of the quantitative 
relationship between the response and 
the explanatory variables and impact it in 

some appreciable ways. Hence, we 
proposed the inclusion of such 
significant interaction terms in the LLR 
model matrix for improved performance 
of the MRR2 in RSM. Therefore, the 
current paper proposes a new LLR 
model matrix which takes the general 
form given by:  

 

&0 = ⎣⎢⎢
⎡1 �.�� ⋯ �.�� �.���.�� ⋯ �.�(�(�)�.��1 �.�� ⋯ �.�� �.���.�� ⋯ �.�(�(�)�.��⋮1 ⋮�.M� ⋮⋯ ⋮�.M� ⋮�.M��.M� ⋮⋯ ⋮�.M(�(�)�.M�⎦⎥⎥

⎤
 

 
where all the �.��, � = 1,2, … , �, � = 1,2, … , �, retain their previous definitions.   
Application 

This section presents the analysis of a 
multi-response problem from the 
literature. For easy reference, MRR2 
results obtained using existing LLR 
model matrix, and the proposed LLR 
model matrix are designated MRR2, 
MRR2*, respectively. Tables that shows 
the goodness-of-fit such as SSE, 
Coefficient of Determination (f�), 
PRESS as well as the optimization 
results based on the desirability function 
are presented. The best goodness-of-fit 
as well as the desirability value are 
shown in bold.  
The Multiple Response Chemical Data 

This problem originates from 
Montgomery (2005). It involves three 
response variables, namely the �� 
(yield), �� (viscosity), and �£ (molecular 
weight). Two inputs (factors) were found 
to influence these responses: reaction 
time (��) and temperature (��). A full 
second-order polynomial were found to 
be adequate for each of the three 
response variables, meaning that the 
interaction term  ������, � = 1,2, … ,13, 
which represents the collective effects of 

reaction time and temperature on 
chemical yield, are statistically 
significant. Hence, its inclusion in the 
LLR model matrices for ��, �� and �£ for 
MRR2*.     
The process specifications for each of 
the responses are as follows: 
Maximize �� with lower limit � = 78.5, 
and target value, ∅ = 80; �� is to take a value in the range of � =62 and � = 68 with target value, ∅ =65; 
Minimize �£with upper limit � = 3300 
and target value, ∅ = 3100.  

The data, collected via a Central 
Composite Design (CCD), is presented 
in Table 1. The optimal tuning 
parameters from (5), the corresponding 
local bandwidths based on (6), and the 
optimal tuning parameters from (7), the 
corresponding local mixing parameters 
based on (8) for MRR2 and MRR2* are 
shown in Tables 2 and 3, respectively. 
The goodness-of-fit and optimization 
results for each of the regression models 
are presented in Tables 4 and 5, 
respectively. 
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Table 1: Chemical process data 

 

 

 

 

 

 

 

 
Table 2: Optimal local bandwidths and mixing parameters for MRR2 
 
 � 

Optimal Local Bandwidths  Optimal Local Mixing Parameters �� � = 3.4392 _ = 0.0268 

�� � = 3.6743 _ = 0.0001 

�£ � = 1.2120 _ = 0.0939 

�� �z = 8.8755 _z = 0.0883 

�� �z = 8.6854 _z = 0.1052 

�£ �z = 9.0054 _z = 0.1135 
1 0.2543 0.2677 0.1489 0.7142 0.4811 0.4392 
2 0.2621 0.2850 0.0566 0.7317 0.6516 0.8870 
3 0.2569 0.2590 0.0828 0.6606 1.0000 0.4795 
4 0.2698 0.2547 0.0304 0.6718 0.6391 0.9273 
5 0.2497 0.3066 0.1389 0.6839 0.8154 0.4592 
6 0.2642 0.2936 0.0965 0.7086 0.4669 1.0000 
7 0.2569 0.2461 0.1227 0.7342 0.5786 0.6548 
8 0.2647 0.2504 0.0628 0.6583 0.9271 0.7118 
9 0.2719 0.3109 0.0815 0.4354 0.7845 0.6873 
10 0.2740 0.2979 0.1165 1.0000 0.5853 0.8771 
11 0.2724 0.2936 0.0903 0.4708 0.7846 0.5026 
12 0.2709 0.3023 0.1052 0.7882 0.3860 0.6397 
13 0.2714 0.3066 0.0790 0.6118 0.5852 0.7400 

 
 
 
 
 
 
 
 
 
 
 
 

i �� �� �� �� �£ 
1 0.1464 0.1464 76.5 62 2940 
2 0.8536 0.1464 78.0 66 3680 
3 0.1464 0.8536 77.0 60 3470 
4 0.8536 0.8536 79.5 59 3890 
5 0.0000 0.5000 75.6 71 3020 
6 1.0000 0.5000 78.4 68 3360 
7 0.5000 0.0000 77.0 57 3150 
8 0.5000 1.0000 78.5 58 3630 
9 0.5000 0.5000 79.9 72 3480 
10 0.5000 0.5000 80.3 69 3200 
11 0.5000 0.5000 80.0 68 3410 
12 0.5000 0.5000 79.7 70 3290 
13 0.5000 0.5000 79.8 71 3500 
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Table 3: Optimal local bandwidths and mixing parameters for MRR2* 
                     Optimal Local Bandwidths                   Optimal Local Mixing 

Parameters �� � = 1.2973 _ = 0.6570 

�� � = 4.8995 _ = 0.0510 

�£ � = 1.2780 _ = 0.0922 

�� �z = 7.0444 _z = 0.0139 

�� �z = 9.9584 _z = 0.2193 

�£ �z = 8.9373 _z = 0.1089 
1 0.1001     0.3177     0.1763 0.5873     0.6342     0.4296 
2 0.0999     0.3861     0.0597 0.6126     0.7544     0.8850 
3 0.1000     0.2836     0.0928 0.5099     1.0000     0.4706 
4 0.0996     0.2665     0.0266 0.5352     0.7456     0.9260 
5 0.1003     0.4715     0.1637 0.5435     0.8698     0.4499 
6 0.0998     0.4203     0.1101 0.5792     0.6242     1.0000 
7 0.1000     0.2323     0.1432 0.6161     0.7030     0.6489 
8 0.0998     0.2494     0.0676 0.5066     0.9486     0.7069 
9 0.0996     0.4886     0.0912 0.1847     0.8481     0.6820 
10 0.0995     0.4373     0.1353 1.0000     0.7076     0.8750 
11 0.0995     0.4203     0.1022 0.2359     0.8481     0.4942 
12 0.0996     0.4544     0.1212 0.6941     0.5671     0.6335 
13 0.0996     0.4715     0.0881 0.4394     0.7076     0.7356 

 
Table 4: Comparison of goodness-of-fit for statistics for MRR2 and MRR2* 

Response Model �� SSE f� PRESS PRESS** �� 
MRR2 5.3254 0.2711 99.0567 2.6539 0.2691 
MRR2* 5.3161 0.2655 99.0765 2.4785 0.2608 �� 
MRR2 5.3830 12.8545 96.4415 198.5980 16.7814 
MRR2* 5.0996 12.1397 96.6393 173.5069 15.6555 �£ 
MRR2 4.9155 68698 92.0351 612200 52728 

MRR2* 4.9311 68800 92.0232 503110 45936 
MRR2* gives the best PRESS and PRESS** across the three responses. In addition, MRR2* produces 
better SSE and f� across two of the three responses. In summary, it is seen that MRR2* accounts for the 
better values in ten cells out of a total of twelve. 
 
Table 5: Optimization results based on desirability function in (13)       

Model �� �� max(�!�) ∅(�!�) min (�!£) d(�!�) d(�!�) d(�!£) D(%) 
MRR2 0.5159 0.2110 78.8604 66.1260 3158.2 0.2403 0.6247 0.7090 47.3887 
MRR2* 0.9461 0.6828 79.2138 64.9084 2023.4 0.4759 0.9695 1.0000 77.2687 

 
The relatively better results of PRESS 

and PRESS** for MRR2* in Table 4 is 
utilized to get a relatively better setting 
(�� = 0.9461, �� = 0.6828) of the 
explanatory variables that 
simultaneously optimizes the three 
responses (�� = 79.2138, �� =64.9084, �£ = 2023.4) based on their 
individual process specifications. Table 
4 shows that MRR2* gives a desirability 
value of approximately 77.3% (from 

comparatively better individual 
desirability of  �(�!�) = 0.4759, �(�!�) = 0.9695, �(�!£) = 1.0000) in 
comparison to its counterpart which only 
manages a paltry value of approximately 
47.4%.  
 

Conclusion  

In this paper, the inclusion of the 
statistically significant interaction terms 
to the model matrix for the LLR 
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component of the MRR2 was proposed 
and the MRR2 resulting from such 
incorporation of such significant 
interaction terms was designated 
MRR2* in the current paper.   

MRR2* was found to perform better 
than MRR2. Specifically, MRR2* was 
found to give smaller prediction errors in 
the three responses considered in the 
paper than the existing MRR2. 
Furthermore, MRR2* produced a 
desirability of 77.3% outperforming the 
MRR2 that produced 47.4%, and thus 
providing an improvement of 100 E°°.£(±°.±±°.± K % = 63.1% in the 

capacity to meet prespecified product 
requirements. The practical relevance of 
the desirability values is that with 
MRR2*, the researcher is able to apply 
optimal values of both the reaction time 
and reaction temperature in order to 
produce a product that meets 77.3% of 
the product requirements.  
 

REFERENCES 
Agarwal, B. L. (2015). Basic Statistics. 

New Age International Publishers: 
New Delhi. 

Anderson-Cook, C. M. and Prewitt, K. 
(2005). Some guidelines for using 
nonparametric models for 
modeling data from response 
surface designs. Journal of 

Modern Applied Statistical 

Models, 4: 106-119. 
Castillo, D. E. (2007). Process 

Optimization A Statistical 
Method. Springer International 
Series in Operations Research and 
Management Science: New York. 

Derringer, G. and Suich, R. (1980). 
Simultaneous optimization of 
several response variables, 

Journal of Quality Technology, 
12(4): 214 – 219. 

Edionwe, E., Mbegbu, J. I. and Chinwe, 
R. (2016). A new function for 
generating local bandwidths for 
semi–parametric MRR2 model in 
response surface methodology. 
Journal of Quality Technology, 
48(4): 388 – 404. 

Edionwe, E., Mbegbu, J. I., Ekhosuehi, 
N. and Obiora-Iluouno, H. O. 
(2018). An improved robust 
regression model for response 
surface methodology. Croatian 

Operational Research Review, 9: 
317 – 330. 

Edionwe, E., Mbegbu, J. I. and Iguodala, 
W. A. (2017). Improving the 
performance of model-robust 
regression 2 (MRR2) method 
using new adaptive mixing 
parameters and a modified 
penalized error sum of squares, 
Journal of the Nigerian 

Association of Mathematical 

Physics, 41: 229 – 240. 
Eguasa, O., Edionwe, E. and Mbegbu, J. 

I. (2022). Local linear regression 
and the problem of dimensionality: 
A remedial strategy via a new 
locally adaptive bandwidths 
selector, Journal of Applied 

Statistics, DOI: 
10.1080/02664763.2022.2026895 

Fan, J. and Gijbels, I. (1992). Variable 
bandwidth and local linear 
regression Smoothers. The Annals 

of Statistics, 20(4): 2008-2036. 
Fan, J. and Gijbels, I. (1996). Local 

Polynomial Modeling and its 
Applications, Chapman and Hall, 
London. 

Hardle, W., Muller, M., Sperlich, S. and 
Werwatz, A. (2005). 

BIU Journal of Basic and Applied Sciences Vol. 8 no. 1 (2023) 



90 

 

Nonparametric and 
Semiparametric Models: An 
Introduction. Berlin: Springer-
Verlag 

Harrington, E. C. (1965). The 
desirability function. Industrial 

Quality Control, 21(10): 494 – 
498. 

He, Z., Zhu, P. F. and Park, S. H. (2012). 
A robust desirability function for 
multi-response surface 
optimization. European Journal of 

Operational Research, 221: 241-
247. 

Joudi-Sarighayeh, F., Abbaspour-
Gilandeh, Y., Kaveh, M., 
Szymanek, M. and Kulig, R. 
(2023). Response Surface 
Methodology Approach for 
Predicting Convective/Infrared 
Drying, Quality, Bioactive and 
Vitamin C Characteristics of 
Pumpkin Slices. Foods, 12: 1114. 

Karlovic, S., Dujmíc, F., Rimac, B. S., 
Badanjak, S. M., Nincevic, G. A., 
Škegro, M., Šimic, M. A. and 
Brncic, M. (2023). Mathematical 
modeling and optimization of 
ultrasonic pre-treatment for drying 
of pumpkin (Cucurbita moschata). 
Processes, 11: 469. 

Loader, C. R. (1999). Bandwidth 
selection: Classical or plug-in? 
The Annals of Statistics, 2: 415-
438. 

Mays, J. E. and Birch, J. B. (2002). 
Smoothing for small samples with 
model misspecification: 
Nonparametric and Semi-

parametric concerns. Journal of 

Applied Statistics, 29(7): 1023-
1045. 

Mays, J. E., Birch, J. B. and Starnes, B. 
A. (2001). Model robust 
regression: Combining parametric, 
nonparametric, and semi-
parametric models. Journal of 

Nonparametric Statistics, 13: 245-
277. 

Matys, A., Dadan, M., Witrowa-
Rajchert, D., Parniakov, O. and 
Wiktor, A. (2022). Response 
surface methodology as a tool for 
optimization of pulsed electric 
field pretreatment and microwave-
convective drying of apple. Appl. 

Sci., 12: 3392. 
Montgomery, D. C. (2005). Design and 

Analysis of Experiments, sixth ed., 
Wiley, New York. 

Myers, R., Montgomery, D. C. and 
Anderson-Cook, C. M. (2009). 
Response Surface Methodology: 
Process and Product Optimization 
Using Designed Experiments, 
Wiley. 

Pickle, S. M., Robinson, T. J., Birch, J. 
B. and Anderson-Cook, C. M. 
(2008). A semi-parametric model 
to robust parameter design. 
Journal of Statistical Planning and 

Inference, 138: 114-131. 
Wan, W. and Birch, J. B. (2011). A semi-

parametric technique for multi-
response optimization. Journal of 

Quality and Reliability 

Engineering International, 27: 47-
59.

 
 
 
 
 

Edionwe & Osemwenkha Improving the Performance of Semi-parametric Model Robust 2  


